
ITC 2019 : University Course Timetabling with MaxSAT

Alexandre Lemos · Pedro T. Monteiro ·
Inês Lynce

Abstract This paper describes the UniCorT tool designed to solve university
course timetabling problems specifically tailored for the 2019 International
Timetabling Competition (ITC 2019). The proposed approach comprehends
pre-processing, the use of a Maximum Satisfiability (MaxSAT) solver, and a
local search procedure.

UniCorT is assessed with the benchmark instances from ITC 2019. The
impact of a handful of techniques in the quality of the solution and the execu-
tion time is evaluated. We take into account different pre-processing techniques
and Conjunctive Normal Form (CNF) encoding, as well as the combination
with a local search procedure. The success of our tool is attested by having
been ranked among the five finalists of the ITC 2019 competition.

Keywords ITC 2019 · MaxSAT · University Course Timetabling

1 Introduction

The University Course Timetabling Problem (UCTTP) was introduced in the
context of the fourth International Timetabling Competition (ITC) 2019 [1].
UCTTP can be informally defined as two complementary problems: (i) course
timetabling; and (ii) student sectioning. The goal of course timetabling is to
find a feasible assignment for all the classes of all courses to a time slot and a
room, subject to a set of time constraints. The goal of student sectioning is to

The authors would like to thank the reviewers for their helpful comments and sug-
gestions that contributed to an improved manuscript. This work was supported by
national funds through Fundação para a Ciência e a Tecnologia (FCT) with refer-
ence SFRH/BD/143212/2019 (PhD grant), DSAIPA/AI/0033/2019 (project LAIfeBlood),
DSAIPA/AI/0044/2018 (project Data2help) and UIDB/50021/2020 (INESC-ID multi-
annual funding).

Instituto Superior Técnico, Universidade de Lisboa
INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
E-mail: {alexandre.lemos,pedro.tiago.monteiro,ines.lynce}@tecnico.ulisboa.pt

105

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

section students into all the classes required by the courses they are enrolled
in, subject to capacity and time constraints.

Timetabling problems have been encoded in the past into propositional
logic [2, 3]. This approach has the advantage of making use of propositional
satisfiability (SAT) solvers, which are well-known for being quite effective [4].

Example 1 Let us consider four Boolean variables rr1c1 , rr2c1 , rr1c2 and rr2c2 repre-
senting the possible assignments of the classes c1 and c2 to all available rooms
(r1 and r2). Furthermore, let us consider that the classes are taught at the
same time, and thus they cannot be taught in the same room. The same room
constraint is encoded as follows: ¬rr1c1 ∨ ¬r

r1
c2 and ¬rr2c1 ∨ ¬r

r2
c2 . A possible so-

lution to this SAT problem is the assignment of class c1 to room r1 and class
c2 to room r2, i.e. rr1c1 = 1, rr2c1 = 0, rr1c2 = 0 and rr2c2 = 1. Naturally, for larger
domains, one may need to encode cardinally constraints.

UCTTP usually requires to optimize a set of non-mandatory (soft) con-
straints. Therefore, in this paper we use a maximum satisfiability solver. The
maximum satisfiability problem (MaxSAT) [4] is an optimization version of
the SAT problem.

This paper provides a detailed description and evaluation of the MaxSAT-
based approach that was ranked amongst the five finalists of ITC 2019. The
resulting tool UniCorT combines pre-processing methods, a MaxSAT solver
and a local search procedure to solve UCTTP. We use a MaxSAT solver to find
a complete solution to a problem instance, followed by a local search procedure
to further optimize the solution. We evaluate two different encodings within
UniCorT 1. This tool is evaluated with the large data sets from the ITC 2019
benchmark [1]. Furthermore, we discuss the advantages and disadvantages of
the different components of the implementation submitted to ITC 2019.

This paper is organized as follows. Section 2 provides the required back-
ground on UCTTP and MaxSAT solving. Section 3 formally describes the
ITC 2019 problem. Section 4 describes UniCorT. Section 4.1 details the pre-
processing techniques. Section 4.2 describes the two different MaxSAT encod-
ings for the course timetabling and student sectioning problems. Section 4.3
describes the local search. Section 5 analyses the evaluation of the proposed ap-
proach considering different encodings. The impact of different pre-processing
techniques is also taken into account. Finally, Section 6 concludes the paper
and discusses possible future directions.

2 Background

This section provides a background on MaxSAT, followed by an overview of
existing approaches to solve the UCTTP.

1 One of these encodings has already been successfully applied to solve the minimal
perturbation problem in a university course timetabling setting [5]. The paper describing
the encoding is available at http://web.tecnico.ulisboa.pt/~alexandre.lemos/papers/

CPAIOR20.pdf.

106

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

http://web.tecnico.ulisboa.pt/~alexandre.lemos/papers/CPAIOR20.pdf
http://web.tecnico.ulisboa.pt/~alexandre.lemos/papers/CPAIOR20.pdf

ITC 2019 : University Course Timetabling with MaxSAT

2.1 MaxSAT

A propositional formula in conjunctive normal form (CNF) is defined as a
conjunction of clauses, where a clause is a disjunction of literals and a literal
is either a Boolean variable x or its complement ¬x. The propositional satisfi-
ability (SAT) problem consists of deciding whether there is a truth assignment
to the variables such that a given CNF formula is satisfied. A formula is sat-
isfied iff there is at least one assignment where all the clauses are satisfied. A
clause is satisfied iff there is at least one literal satisfied. Nowadays, most SAT
solvers apply conflict-driven clause learning algorithms [6, 7], which are based
on the well-known Davis-Putnam algorithm [8] (see [4] for more details).

The MaxSAT problem is an optimization version of SAT, where the objec-
tive is to find an assignment that maximizes the number of satisfied clauses.
A partial MaxSAT formula (ϕ = ϕh ∪ ϕs) consists of a set of hard clauses
(ϕh) and a set of soft clauses (ϕs). The objective in partial MaxSAT is to find
an assignment such that all hard clauses in ϕh are satisfied, while maximizing
the number of satisfied soft clauses in ϕs.

In this paper, we consider the weighted variant of partial MaxSAT where
there is a function wϕ : ϕs → N associating an integer weight to each soft
clause. In this case, the objective is to satisfy all the clauses in ϕh and maximize
the total weight of the satisfied clauses in ϕs.

Example 2 Recall example 1, where rr1c1 = 1, rr2c1 = 0, rr1c2 = 0 and rr2c2 = 1
was a feasible solution. Now, let us consider that the assignment of class c1 to
room r1 has a penalty of 1 associated. For this reason, we add ¬rr1c1 as a soft
clause with weight 1. The previously found solution has now a cost 1 and it is
not optimal. The optimal solution is rr1c1 = 0, rr2c1 = 1, rr1c2 = 1 and rr2c2 = 0.

Most MaxSAT solvers [9, 10] call a SAT solver iteratively to improve the
quality of the solution. There are different algorithms to guide the search. In
this work, we use the linear search with clusters algorithm [11]. The basic idea
is the following. We start with a formula where all clauses, including the soft
clauses, are considered hard. If a solution is found, then the process ends with
the optimal solution. Otherwise, the SAT solver is restarted with a relaxed
formula. The relaxed formula consists of adding one new variable to each soft
clause. Additionally, we add a constraint imposing a limit on the number of
relaxed clauses. This limit is incremented each time the formula is not satisfied.
This process ends when a solution is found, or when it is impossible to satisfy
all the hard clauses.

In general, we assume that all formulas are encoded into CNF. Neverthe-
less, we will write some constraints in pseudo-Boolean (PB) form for the sake
of readability. PB constraints are nothing more than linear constraints over
Boolean variables, and can be written as follows:

∑
qixi opK, where K and all

qi are integer constants, all xi are Boolean variables, and op ∈ {<,≤,=,≥, >}.
PB constraints can be easily translated into CNF [12]. In this work, we tested
different encodings for PB constraints.

107

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

Example 3 Consider the following PB constraint:
∑2

i=0 r
ri
c1 ≤ 1. The constraint

ensures that the class c1 can only be assigned to at most one room. One possible
CNF encoding is as follows: (¬rr0c1 ∨ ¬r

r1
c1) ∧ (¬rr0c1 ∨ ¬r

r2
c1) ∧ (¬rr1c1 ∨ ¬r

r2
c1).

2.2 University Course Timetabling

UCTTP is known to be NP-complete [13, 14]. The organization of timetabling
competitions in the past has led to important advances in solving UCTTP [15,
16]. In the literature, there are several different approaches to solve UCTTP,
namely: Constraint Programming (CP) [17, 18], Answer Set Program-
ming (ASP) [19], Boolean Satisfiability (SAT) [2], Maximum Satisfiabil-
ity (MaxSAT) [3, 5], Integer Linear Programming (ILP) [20–22] and local
search [20, 23].

Lemos et al. [24] proposed two integer programming models to solve univer-
sity timetabling problems. The Boolean model that used two decision variables
to describe the assignment of a class to a time slot and the assignment of a
class to a room. The authors also proposed a mixed model that had an integer
variable representing the start time of class and a Boolean variable represent-
ing the assignment of a class to a room. The direct model presented in this
paper can be seen as the extension of the Boolean model.

In the context of SAT, Aśın Achá et al. [3] proposed a CNF encoding with
four types of decision variables to solve curriculum-based course timetabling
with data from ITC-2007. The authors proposed variables to described: the
day of the class; the hour of the class; the room of the class, and finally the
different times a curriculum is taught. Obviously, the problem is different from
ours. For example, in ITC 2019 the classes can be scheduled in different weeks.

Later, Lemos et al. [5] proposed a CNF encoding with four types of decision
variables to solve the minimal perturbation problem applied to UCTTP with
data from ITC 2019. The authors proposed variables to describe: the week of
the class; the day of the class; the hour of the class and finally the room of the
class. This linked encoding can be seen as the extension to the work proposed
in [3].

3 Problem Definition

In this section, we formally describe the ITC 2019 problem adapted from [1].
Let us consider a set of courses Co. A course (co ∈ Co) is composed by a
set of classes Cco. These classes are characterized in configurations (Configco)
and organized in parts (Partsconfig). A student must attend the classes from
a single configuration. A student enrolled in the course co and attending the
configuration config ∈ Configco must attend exactly one class from each part
Partsconfig . The set of classes belonging to part ∈ Partsconfig is represented by
Cpart .

All classes C (from different courses) must have a schedule assigned to
them. Each class c ∈ C has a set of possible periods (Pc) to be scheduled

108

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

Pre-processing Course
Timetabling

Student
Sectioning

MaxSAT

Student Conflict
Optimisation

Local SearchProblem
Instance

Timetable

Fig. 1: Overall schema of UniCorT.

in. Class c has a hard limit on the number of students that can attend it
(limc). A class c may have a set of possible rooms (Rc). Each room r ∈ Rc

has capacity ≥ limc. Each class may also have a parent-child relation with
another class, i.e., a student enrolled in class c must also be enrolled in the
parent parentc.

A time period p corresponds to a 4-tuple (Wp, Dp, hp, lenp) denoting a set
of weeks (Wp), a set of days (Dp), an hour (hp), and its duration (lenp > 1).

Let us consider a set of rooms R where the classes can be scheduled. The
travel time, in slots, between two rooms r1, r2 ∈ R is represented by travelr1r2 .
Each room r ∈ R has a set of unavailable periods Pr.

Given a set of students S, each student s ∈ S is enrolled in a set of courses
Cos . Furthermore, UCTTP is subject to a set of constraints (constraintc is
the set of constraints relating to class c) that can be divided into hard or soft.
For brevity, we defined the constraints as needed in the encoding section (for
a full description see [1]).

4 Proposed Solution

In this section, we describe UniCorT. Figure 1 describes the overall schema
of the tool, which has three separate components: pre-processing the UCTTP
instance; using a MaxSAT solver to find a solution; and improving the quality
of the solution with a local search procedure.

4.1 Pre-processing

The pre-processing component relies on two techniques: (i) identifying of inde-
pendent sub-instances; and (ii) merging students with exactly the same course
enrollment plan.

Technique (i) divides the problem instance into self-contained sub-
instances. A set of sub-instances (Inst) are self-contained if and only if the
following four constraints are upheld:

1. ∀i1,i2∈Inst Coi1 ∩ Coi2 = ∅;
2. ∀i1,i2∈Inst Ri1 ∩Ri2 = ∅;
3. ∀i1,i2∈Inst Si1 ∩ Si2 = ∅;
4. ∀i1,i2∈Inst ∀c∈Ci1

constraintc ∩ Ci2 = ∅.

109

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

If these constraints are upheld then we can split the instances without remov-
ing any non redundant solution. Note that it is possible to consider a relaxation
of this procedure.

Example 4 Let us consider an instance Inst with five courses co1, . . . , co5 ∈
CoInst and five rooms r1, . . . , r5 ∈ RInst. The classes of the courses co1 and
co2 can only be taught in two rooms r1 and r2. The classes of the courses co3,
co4 and co5 can only be taught in rooms r3, r4 and r5, respectively. Therefore,
we can create four sub-instances i1, . . . , i4 ∈ Inst such that co1, co2 ∈ Coi1 ,
co3 ∈ Coi2 , co4 ∈ Coi3 and co5 ∈ Coi4 .

Consider three students s1, s2, s3 ∈ SInst with the following enrollments: s1
is enrolled in courses co1, co2; s2 is enrolled in courses co3, co4; and finally s3 is
enrolled in co5. The student enrollments reduces the number of sub-instances
since sub-instances i2 and i3 violate constraint 3. These two sub-instances
must be solved together.

Consider a no overlap constraint between the classes of the courses co4
and co5. The sub-instances i3 and i4 violate constraint 4. For this reason, the
instance Inst can only be split into two self-contained sub-instances such that
co1, co2 ∈ Coi1 and co3, co4, co5 ∈ Coi2 .

Technique (ii) reduces the number of variables and constraints by creating
groups of students that share the same curricular plan [25, 26]. The follow-
ing example illustrates the identification of groups of students with the same
curricular plan.

Example 5 Let us consider three courses co1, . . . , co3 ∈ Co and six students
s1, . . . , s6 ∈ S that are enrolled in courses as follows: s1, . . . , s4 are enrolled
in the courses co1 and co2; and s5, s6 are enrolled in the courses co2 and co3.
In this example, it is possible to generate two perfect clusters: clu1 for all the
students enrolled in courses co1 and co2; and clu2 for all the students enrolled
in courses co2 and co3.

However, this process may remove all the feasible solutions since the classes
of each course may have a limitation on the number of students enrolled. Let
us denote the greatest common divisor (GCD) between the numbers n1 and
n2 as GCD(n1, n2). Consider now an expansion of the previous example.

Example 6 Let us revisit the Example 5 and consider that each course has
two classes, and so c1, c2 ∈ Cco1 , c3, c4 ∈ Cco2 and c5, c6 ∈ Cco1 . A student
enrolled in the courses co1, co2, co3 must attend exactly one class. The limit
on the number of students that can attend is, for each class, as follows: limc1 =
limc2 = 4; limc3 = limc4 = 3; and limc5 = limc6 = 2. Figure 2 shows the
clusters defined in Example 5 and a possible student sectioning to classes. One
can see that the solution is infeasible.

For this reason, we computed GCD between the total number of students
enrolled in a course and the smallest capacity of the classes of that course.
In this case, we obtain: GCD(4, 4) = 4 for course co1; GCD(6, 3) = 3 for

110

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

co2

c4

limc4=3

clu2
s5
s6

limc5=2

c5 c6

limc6=2

co3

limc3=3
limc1=4

c1

s1
s2
s3
s4

co1

clu1

clu1

s1
s2
s3
s4

clu2

limc2=4

c3

s5
s6

c2

Fig. 2: An infeasible assignment of students to classes based on the clusters
defined in Example 5.

s3
s4s4

co2

c4

limc4=3

clu2
s5
s6

limc5=2

c5 c6

limc6=2

co3

limc3=3
limc1=4

c1

co1

limc2=4

c2
clu4

s1
s2clu3

c3

s5
s6

clu2

s4clu4 s1
s2
s3

clu3

Fig. 3: A feasible assignment of students to classes based on the clusters defined
in Example 6.

course co2; and GCD(2, 2) = 2 for course co3. This indicates that the cluster
of students enrolled in co2 needs to be smaller or equal to 3. Therefore, we need
to split clu1. One possibility is to create two clusters. One feasible solution is
shown in Figure 3.

This process ensures that it is possible to find a feasible solution to a
problem instance, since it is possible to combine all groups of students into
classes. However, we may remove the optimal solution by not allowing the
assignment of a single student to a given class. The pros and cons of creating
clusters are discussed in Section 4.2.3. The GCD can also be used to choose
the number of sections of a course in order to reduce the number of conflicts
a priori [26].

4.2 MaxSAT

In this section, we formally describe two MaxSAT encodings for course
timetabling. The two MaxSAT encodings for course timetabling are denoted
as: direct and linked [5]. The ITC 2019 optimization criteria are encoded as
soft constraints in both encodings. Furthermore, we also describe a MaxSAT
encoding for student sectioning.

4.2.1 Direct Course Timetabling

The most direct encoding has only one type of variable to describe the as-
signment of a class to an allocation slot and a room. This type of encoding

111

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

is commonly used to describe scheduling problems [20, 21, 24, 27]. For this
reason, we decided to start with this type of encoding in CNF. This encoding
can be seen as an expansion of the Boolean encoding we proposed in [24].
Our direct encoding to solve course timetabling has only two Boolean decision
variables:

– tslot
c represents the assignment of class c to the allocation slot slot,

with c ∈ C and slot ∈ [0, . . . , |Pc|];
– rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The separation of the decision variables into two variables allows us to
reduce the number of unnecessary variables. Using only one decision variable
would increase the amount of memory allocation (|Rc| × |Pc|), where most of
these variables are always with value 0.

Most UCTTP constraints have a similar encoding when using the direct
encoding. For this reason, here we only show a few examples.

In the direct encoding we need two types of exactly one constraints. We
need to ensure that each class is assigned exactly one slot and in some cases
that each class is assigned exactly one room.

Example 7 Let us consider two classes c1 and c2 with the following char-
acteristics: Dc1 = Dc2 = {0101, 1010}; Wc1 = Wc2 = {11110, 01111};
Hc1 = {10, 11}; Hc2 = {11}; Pc1 = {1, . . . , 12}; Pc2 = {1, . . . , 8}; Rc1 = {1, 2}
and Rc2 = ∅. In this example, we generate the following exactly one con-

straints:
∑12

i=1 t
i
c1 = 1,

∑8
i=1 t

i
c2 = 1 and

∑2
i=1 r

i
c1 = 1.

All constraints related to time allocations, can be encoded into one binary
clause for each pair of classes ci, cj where pi ∈ Pci and pj ∈ Pcj :

¬tpi
ci ∨ ¬t

pj
cj . (1)

All constraints that involve both time and room allocation can be encoded as
follows:

¬tpi
ci ∨ ¬t

pj
cj ∨ ¬r

roomi
ci ∨ ¬rroomj

cj . (2)

The following constraints are encoded the same way for both encodings. In
order to ensure that a given class cannot be taught in more than V different
days (MaxDays(V)) we use an auxiliary variable dayofweekconst

d , where const
is the identifier of the constraint and d ∈ {1 , . . . , |Days|}. This variable corre-
sponds to having at least one class, of this constraint, assigned to weekday d.
Now, we only need to ensure that:∑

c∈C

∑
p∈Pc

∑
d∈[1,...,|Dayp|]

dayofweekconst
d ≤ V . (3)

In order to ensure that there are no more than V consecutive slots (breaks)
throughout a day between a set of classes (MaxBlock/MaxBreaks) we need to
generate all blocks. After computing all blocks, we add a clause for every class

112

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

c1 to cn assigned to a period (p1 ∈ Pc1 to pn ∈ Pcn) in such a way that it
forms a block of classes that breaks one of these constraints:

¬tp1
c1 ∨ . . . ∨ ¬tpn

cn . (4)

Example 8 Let us consider two classes c1 and c2 that are taught in the same
day and cannot overlap in time. Furthermore, all classes are involved in the
MaxBreaks constraint which ensures that there are 0 breaks (of 1 time slot
or more) between them. For simplicity, let us consider that there are only
three time slots, t1, t2, t3, per day and all the classes have the same duration
of 1 time slot. To ensure that the constraint MaxBreaks holds, we add clauses
¬tt1c1 ∨ ¬t

t3
c2 and ¬tt1c2 ∨ ¬t

t3
c1 .

4.2.2 Linked Course Timetabling

It is obvious that we do not need always to take into account the complete
schedule information. For some constraints, we only need the information
about week, day or hour, and not all the three. For this reason, our linked
encoding to solve course timetabling has only four Boolean decision variables:

– w
Weekp
c represents the assignment of class c to the set of weeks Weekp ,

with c ∈ C, and p ∈ Pc;

– d
Dayp
c represents the assignment of class c to the set of days Dayp,

with c ∈ C, and p ∈ Pc;

– h
hourp
c represents the assignment of class c to the hour hourp,

with c ∈ C and p ∈ Pc;
– rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The usage of these variables can be seen as an expansion of the encoding
proposed in [3]. The scheduling possibilities of a class are usually just a small
part of the complete set. For this reason, we only define these variables for ac-
ceptable values of the class domain. Furthermore, the linked encoding reduces
the number of constraints required. For example, SameStart constraints (i.e.
forcing a set of classes to start at the same time) do not require information
about the day or week of the class.

In contrast to the direct encoding we can reduce the size of each exactly
one constraint since we have separated the variables for the time allocation.
Therefore, we have four exactly one constraint for each class (room, hour, day
and week). The reduction in the size of the exactly one constraints is important
since it allows us to avoid a known bottleneck of timetabling encodings using
CNF [2].

Example 9 Recall Example 7. The linked encoding for the same instance gen-
erates a much smaller number of exactly one constraints. In this example, we
generate the following exactly one constraints:

∑2
i=1 w

i
c1 = 1,

∑2
i=1 w

i
c2 = 1,∑2

i=1 d
i
c1 = 1,

∑2
i=1 d

i
c2 = 1,

∑2
i=1 h

i
c1 = 1, h11

c2 = 1 and
∑2

i=1 r
i
c1 = 1.

113

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

Once again, most UCTTP constraints have a similar encoding. Therefore,
here we only show a few examples. For constraints involving only the variable
hour (e.g. SameStart) we add the clause:

¬hhourpi
ci ∨ ¬h

hourpj
cj . (5)

Similarly, the same type of clauses have to be added for constraints involving
only the variables day (e.g. SameDay), week (e.g. SameWeek) and room (e.g.
SameRoom).

However, not all constraints are so simple to write. For constraints that
involve all the time assignments (week, day and hour) we add an auxiliary
variable t . This variable has exactly the same meaning that the decision vari-
able of the direct encoding. This allows us to generate binary clauses to en-
code more complex constraints (e.g. ensuring that two classes do not overlap
in time).

To further reduce the size of the clauses, we define the auxiliary variables
sdcicj to represent two classes taught in the same day (i.e. with at least one day
overlap). For each two classes ci, cj with i 6= j, consider that overlap in days
Day0 to Dayn belong to the domain of class ci, Dayn+1 to Daym belong to the
domain of class cj , with 0 < n < m. Hence, we add the following equivalence:

sdcicj ⇐⇒ (dDay0
ci ∨ . . . ∨ dDayn

ci) ∧ (dDayn+1
cj ∨ . . . ∨ dDaym

cj). (6)

Similarly, one can define an auxiliary variable swci
cj to represent two classes

overlapping in at least one week.
To guarantee that no two classes (ci, cj) are taught in the same room (ro)

in overlapping times, we add the clause:

¬sdcicj ∨ ¬sw
ci
cj ∨ ¬h

hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroci ∨ ¬r

ro
cj . (7)

The remaining constraint types are encoded in the same way for both
encodings (see previous section).

4.2.3 Student Sectioning

The usage of clusters requires us to define a set Cluster of clusters of students.
The number of students merged in the clu ∈ Cluster is represented by |clu|.

In order to solve student sectioning our encoding is extended with one de-
cision variable scclu, where c ∈ C and clu ∈ [1, . . . , |Cluster|]. The advantage of
the pre-processing step of creating clusters is to reduce the number of variables
and constraints required to model students. Note that ITC 2019 instances do
not require student sectioning to be balanced as in [26].

Example 10 Let us consider again Example 5. Recall that we have three
courses co1, . . . , co3 ∈ Co and six students s1, . . . , s6 ∈ S that are enrolled
in the following courses: students s1, . . . , s4 are enrolled in the courses co1 and
co2; and students s5, s6 are enrolled in the courses co2 and co3. Therefore, it is
possible to generate two perfect clusters: clu1 for all the students enrolled in

114

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

courses co1 and co2; and clu2 for all the students enrolled in courses co2 and
co3. Additionally, consider that |Cco1 | = |Cco2 | = 1 and |Cco3 | = 6.

The two clusters allow to reduce the number of variables from 22 (the
number of students times the number of classes available for each student) to
9 (the number of clusters times the number of classes). Note that the impact
of the clusters depends not only on the number of students merged but also on
the course composition. In this case, the smaller cluster (clu2) has a greater
impact since the courses have a larger number of classes, more precisely 7
variables.

In order to ensure that a student can only be assigned to a single course con-
figuration, we define an auxiliary variable for each pair configuration-cluster of
students. The variable is denoted as conf config

clu , where clu ∈ [1, . . . , |Cluster|],
config ∈ Configco and co ∈ Co.

We need to add an exactly one constraint to ensure that each cluster of
students id is enrolled in exactly one configuration of each course. To ensure
that the class capacity is not exceeded, we add the following constraint for
each class c: ∑

clu∈[1,...,|Cluster|]

|clu| × scclu ≤ limc. (8)

In addition, to ensure that a cluster of students clu enrolled in a class c is
also enrolled in this parent class parentc, we add the following clause:

¬scclu ∨ sparentcclu . (9)

Finally, we need to ensure that a cluster of students clu is enrolled in exactly
one class of each part of a single configuration of the course co. The conflicting
schedule of classes attended by the same cluster of students is represented by
a set of weighted soft clauses. For each cluster of students id enrolled in two
classes ci, cj overlapping in time, we add:

¬sciclu ∨ ¬s
cj
clu ∨ ¬sw

ci
cj ∨ ¬sd

ci
cj ∨ ¬h

hourci
ci ∨ ¬h

hourcj
cj . (10)

4.3 Local Search: Student Conflict Optimisation

The goal of this procedure is to improve the quality of the solution found with-
out changing the schedule and room assignments of the courses. Neighborhood
structures are the basis of this local search (LS) procedure. In this work, the
neighborhood consists of small changes in the student sectioning. To create a
new neighborhood two operations can be performed: (i) allocating a cluster
of students to a different class with empty seats and (ii) swaping two clusters
of students between classes. Considering these moves, the procedure does not
require the knowledge of course timetabling constraints. The LS procedure
stops when the neighbors of the best solution cannot reduce the number of
conflicts (i.e. the solution found has the best cost of its neighborhood).

115

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

co2

c4

limc4=3

s5
s6

limc5=2

c5 c6

limc6=2

co3

s1
s2
s3

limc3=3
s4

M1 M2
c3

s5
s6

Fig. 4: The two neighbors of the solution in Example 6.

Example 11 Let us consider again Example 6. Additionally, consider that the
classes c3 and c5 are taught at the same time, on the same day and in the
same week. For this reason, the solution shown in Figure 3 has two conflicts
(students s5 and s6 are sectioned into two classes that overlap in time). This
solution would have two neighbors for which the solution would improve. These
two neighbors are shown in Figure 4. The neighbor M1 swaps students s5 and
s6 with students s2 and s3 (from class c3 to c4). However, this move is not
possible since the clusters do not allow to separate the students s2 and s3 from
s1. The neighbor M2 results from is just sectioning students s5 and s6 to the
class c6 instead of c5. This change does not require to break any clusters and
reduces the number of conflicts to zero.

5 Experimental Evaluation

In this section, we discuss the main computational results obtained. First, we
describe the experimental setup used to validate UniCorT (Section 5.1). Next,
we discuss our results for UCTTP (Section 5.2). Finally, we present a summary
of the results (Section 5.3).

5.1 Experimental Setup

The experimental evaluation was performed on a computer with Fedora
14, with 32 CPUs at 2.6 GHz and 126 Gb of RAM. All results were obtained
when running the solver with a time out of 6,000 seconds.

We used the benchmark obtained from ITC 2019 [1] to validate our tool.
The benchmark is divided into three groups of instances (early, middle, late).
All results were verified by an online validation tool provided by the organiz-
ers2.

UniCorT was implemented in C++, using the MaxSAT solver TT-Open-
WBO-Inc [10, 28]3 as a black box. TT-Open-WBO-Inc is a linked MaxSAT

2 https://www.itc2019.org/validator, accessed in January of 2020
3 TT-Open-WBO-Inc won both the Weighted Incomplete tracks at MaxSAT Evaluation

2019. The results are available at https://maxsat-evaluations.github.io/2019/.

116

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

https://www.itc2019.org/validator
https://maxsat-evaluations.github.io/2019/

ITC 2019 : University Course Timetabling with MaxSAT

solver [9] that has different algorithms and encodings to solve a given prob-
lem. The results shown in this paper correspond to the best configuration
of the parameters of the solver. The solver was executed with the following
parameters:

? -algorithm=6 corresponding to the use of linear search with the clusters
algorithm [11];

? -pb=2 corresponding to the use of the adder encoding [29] to convert the
PB constraints to CNF;

? -amo=0 corresponding to the use of the ladder encoding [30] to convert
exactly one constraints to CNF.

The linear search with the clusters algorithm uses a lexicographic optimiza-
tion criterion [31]. Recall that ITC 2019 considers four optimization criteria:
the cost of assigning a class to a room; the cost of assigning a class to a time
slot; the number of students conflicts; and the weighted sum of violated soft
constraints. Each instance has its own weight for each criterion. We have com-
puted the worst possible penalization of each criterion and used the value to
order the lexicographic optimization.

The XML parser used to parse the ITC 2019 input file was RAPIDXML4.
Also, we make our implementation available on github (https://github.com/
ADDALemos/MPPTimetables/tree/ITC-2019).

5.2 Computational Evaluation

In this section, we discuss the results of UniCorT and all possible configura-
tions tested.

5.2.1 Pre-processing Techniques

Recall that we discussed two pre-processing techniques: (i) identification of
independent sub-instances and (ii) merging students into clusters.

Identification of independent sub-instances The identification of independent
sub-instances allows us to split the problem without loosing solutions. In the
end, it is just a question of combining all the solutions. On average, we can split
an instance into 3 sub-instances. In most cases, the instances have one large
instance and two smaller instances. A detailed description of the sub-instances
is shown in Table 1.

4 RAPIDXML is available at http://rapidxml.sourceforge.net/manual.html, accessed
in February 2019.

117

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

https://github.com/ADDALemos/MPPTimetables/tree/ITC-2019
https://github.com/ADDALemos/MPPTimetables/tree/ITC-2019
http://rapidxml.sourceforge.net/manual.html

A. Lemos et al.

Table 1: Number of sub-instances found and the respective average size.

Instance # Inst # Classes
Avg. Median

Early

agh-fis-spr17 2 599.5 599.6
agh-ggis-spr17 3 617 12

bet-fal17 4 292.25 127
iku-fal17 4 649.5 140

mary-spr17 3 281.3 10
muni-fi-spr16 1 575 575

muni-fsps-spr17 3 543.3 10
muni-pdf-spr16c 4 635.25 9.5

pu-llr-spr17 3 388.6 165
tg-fal17 1 711 711

Middle

agh-ggos-spr17 2 620.5 620.5
agh-h-spr17 1 460 460
lums-spr18 1 487 487

muni-fi-spr17 2 515 515
muni-fsps-spr17c 6 130.1 6.5
muni-pdf-spr16 5 909 2

nbi-spr18 3 260 34
pu-d5-spr17 6 389.7 12
pu-proj-fal19 4 2207 51

yach-fal17 3 156.3 165

Late

agh-fal17 4 1876.66 10
bet-spr18 4 340.75 140
iku-spr18 5 556.4 56
lums-fal17 1 502 502
mary-fal18 3 319.6 5

muni-fi-fal17 1 535 535
muni-fspsx-fal17 4 326.4 32
muni-pdfx-fal17 6 1854.83 2.5

pu-d9-fal19 7 816.42 8
tg-spr18 1 676 676

Merging students Merging students with the same curricular plans allows to
reduce the number of variables and constraints on the student sectioning part
of the problem. Figure 5 shows the percentage of the total number of variables
required to model students using different clusters. The clusters represent
the percentage of the total number of variables required to model students
with different curricular plans per instance. However, this type of clusters
cannot be applied in practice since they would remove feasible solutions (see
Example 3). Alternately, the GCD clusters represent the cluster divided using
the GCD method discussed above. Recall that the number of variables needed
to model students is influenced by the number of classes per enrolled course
(see Example 10).

Most instances have a significant bottleneck in the creation of clusters
caused by the hard limit on the number of students enrolled in a class. On
average the GCD clusters are 40 points worse than a normal cluster. On av-
erage, one can reduce the number of variables relating to students up to 23%.
Instances nbi-spr18 and yach-fal17 have a larger reduction on the number of

118

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

 0

 20

 40

 60

 80

 100

pu-proj-fal19

pu-d5-spr17

pu-d9-fal19

pu-llr-spr17

m
uni-pdfx-fal17

m
uni-f-spr17

m
uni-f-spr16

m
uni-pdf-spr16

agh-ggos-spr17

bet-spr18

m
ary-fal18

bet-fal17

agh-fs-spr17

agh-fal17

m
ary-spr17

m
uni-f-fal17

m
uni-fsps-spr17

m
uni-pdf-spr16c

agh-ggis-spr17

agh-h-spr17

m
uni-fsps-spr17c

m
uni-fspsx-fal17

nbi-spr18

yach-fal17

%
 #

 S
tu
d
e
n
t's

 V
a
r.

Clusters
GCD Clusters

No Clusters

Fig. 5: Percent decrease in the number of variables required to model students
increasing clustering strategy. The grey circles represent timed out instances
when using GCD clusters.

variables (around 50%). On the other hand, instances pu* have the smallest
reduction (14%).

5.2.2 MaxSAT Solving

In this section, we compare the different CNF encodings and the advantages of
solving the course timetabling problem separated from the student sectioning
problem.

Figure 6 compares the total number of hard clauses with the number of
soft clauses generated by our encodings. It is clear that the number of soft
clauses is considerably smaller for all instances. On average, the number of
soft clauses is 2% of the global number of clauses. Most instances that timed
out have a higher percentage of soft clauses but these instances also have a
larger overall number of soft clauses. With this difference in mind, we focused
more on the hard constraints as they are dominant.

We can find a solution within the time limit for 20 out of 30 instances using
our best approach (see Table 2). However, the solver was not able to prove
optimality within the time limit on any of the instances.

Figure 7 compares the number of hard clauses generated by the CNF en-
coding and the CPU time needed to find the best solution for each instance
considering two approaches to encode the problem (direct and linked). In gen-
eral, one can see that the instances with a larger number of hard constraints
take a larger amount of time. Using the linked encoding reduces the number
of constraints needed per instance. Therefore, one can solve 9 more instances
within the time limit. Most of the unsolved instances actually have two orders

119

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

 90

 92

 94

 96

 98

 100

pu-d5-spr17

bet-fal17

lum
s-spr18

pu-llr-spr17

lum
s-fal17

m
uni-pdf-spr16c

m
uni-fsps-spr17c

nbi-spr18

m
uni-pdf-spr16

agh-ggis-spr17

agh-fs-spr17

m
ary-fal18

agh-ggos-spr17

yach-fal17

m
uni-f-spr16

m
uni-f-fal17

bet-spr18

agh-fal17

pu-d9-fal19

agh-h-spr17

iku-spr18

iku-fal17

tg-spr18

pu-proj-fal19

m
uni-fspsx-fal17

m
uni-pdfx-fal17

m
uni-f-spr17

m
ary-spr17

m
uni-fsps-spr17

tg-fal17

%
 #

 c
la
u
s
e
s

Hard Clauses Soft Clauses

Fig. 6: Percentage of soft clauses for each instance. The grey circles represent
timed out instances.

of magnitude more constraints than the other instances (top right corner of
Figure 7). Most of these constraints result from the MaxBlock and MaxBreak
constraints (to be discussed further on).

Figure 8 compares the number of hard clauses generated by the CNF en-
coding for each approach tested. One can see that the direct encoding requires
much more constraints to encode the same instance. The direct encoding re-
quires, on average, 7 × 1010 more constraints than the linked encoding. This
can be explained by the fact that most constraints are only related either to
an hour, day or week. There are few constraints that involve all weeks, days
and hours simultaneously. Furthermore, one can reduce the need to combine
all these with the usage of auxiliary variables (e.g. sd). For this reason, the
usage of only one variable for the time allocation problems creates unnecessary
constraints.

Figure 9 compares the time spent to find the best solution for each approach
tested. One can see that the direct encoding requires only a few more seconds
to find a solution of the same cost for each instance that both approaches solve
within the time limit. The direct encoding requires, on average, 200 seconds
more than the linked encoding. Furthermore, we can clearly see that most
instances that timed out with the direct encoding are solved in only a few
seconds by the linked encoding (bottom right of Figure 9). On average, the
linked encoding requires only 2,000 seconds to solve the timed out instances.

In case of the linked encoding, for most instances, the solver requires only a
short amount of time to produce the best solution. Figure 10 shows a compar-
ison between the normalized cost of the best found solution and the CPU time
in seconds. The figure shows the normalized cost since each instance has its
own weights on the optimization criterion and therefore would be impossible

120

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

 0 1000 2000 3000 4000 5000 6000

T
im
e

 O
u
t
6
,0
0
0#
 h
a
rd

 c
la
u
s
e
s

Time best cost (s)

Linked
Direct

Fig. 7: A comparison between the linked and the direct encodings in terms
of the number of hard constraints (log scale) versus the time spend to find
the best solution. The orange square contains the instances that timed out.
33.3% and 63.3% of the instances are in the square for linked and the direct
encodings respectively.

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

#
 H
a
rd

 C
la
u
s
e
s
 L
in
k
e
d

Hard Clauses Direct

Solved by both
Solved only by Linked

Time out by both

Fig. 8: A comparison between the linked and the direct encodings in terms of
the number of hard constraints (log scale). The blue line represents the time
limit.

to compare them in the same graph. One can see that the best solution, for
most instances, is found early on (within 2,000 seconds). In fact, only 5 out
of 20 instances improve their quality after 2,000 seconds. The quality of the
solution does not improve until the time out is reached.

MaxBlocks and MaxBreaks. Figure 11 shows the percentage of clauses gener-
ated from MaxBlocks and MaxBreaks constraints for each instance. One can
see that these constraints generate a significant number of additional clauses.

121

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

L
in
k
e
d

 t
im
e

 b
e
s
t
c
o
s
t
(s
)

Direct time best cost (s)

Fig. 9: A comparison between the linked and the direct encodings in terms of
CPU time for each instance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

N
o
rm
a
liz
e
d

 C
o
s
t

Time (s)

Fig. 10: Normalized cost versus CPU time for each instance with linked en-
coding. The grey square represents the best cost found.

In the worst case, we need to generate over 35% more clauses to deal with these
constraints. Note that we cannot solve the 10 instances with a higher number
of hard clauses (see Figure 8). In most cases, the high number of constraints
is caused by MaxBlocks and MaxBreaks constraints. The exceptions are the
instances from iku*, which have the largest number of classes. In fact, the size
of our exactly one constraints is much larger than 26 which is the limit found
by Bittner et al. [2] for solvable instances.

Decomposing UCTTP. Our best approach decomposes the UCTTP into two
sub-problems: (i) course timetabling and (ii) student sectioning. This decom-
position may remove the optimal solution. However, it does not remove any
feasible solution. The goal of decomposition is to reduce the size of the prob-

122

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

 0

 25

 50

 75

 100

iku-fal17

iku-spr18

m
uni-fspsx-fal17

m
ary-spr17

m
uni-fsps-spr17

m
uni-pdf-spr16c

tg-fal17

agh-h-spr17

lum
s-spr18

m
uni-fsps-spr17c

m
uni-pdf-spr16

nbi-spr18

yach-fal17

lum
s-fal17

m
ary-fal18

tg-spr18

agh-ggis-spr17

agh-ggos-spr17

m
uni-f-spr16

agh-fs-spr17

m
uni-f-spr17

m
uni-f-fal17

pu-llr-spr17

m
uni-pdfx-fal17

bet-fal17

pu-proj-fal19

pu-d5-spr17

agh-fal17

pu-d9-fal19

bet-spr18

%
 #

 h
a
rd

 c
la
u
s
e
s

Other Hard Const.
MaxBreaks/MaxBlocks Const.

Fig. 11: Percentage of clauses generated by MaxBlocks and MaxBreaks con-
straints. The grey circles represent timed out instances.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

C
T
T
+
S
S

 t
im
e

 b
e
s
t
c
o
s
t
(s
)

UCTTP time best cost (s)

Fig. 12: A comparison of the CPU time, in seconds, when solving the CTT+SS
problems separated or the UCTTP as a whole.

lem, especially for instances with a large number of clusters of students. The
decomposition allows us to solve 3 more instances. Figure 12 compares the
performance of the solver before and after decomposing the problem, in terms
of CPU time.

5.2.3 Local Search

Our straightforward implementation of this method allows to improve the
quality of the solution without adding significant overhead. On average, the
method requires only 6% of the overall execution time of the approach. Fig-

123

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

agh-fs-spr17

agh-ggis-spr17

m
ary-spr17

m
uni-f-spr16

m
uni-fsps-spr17

m
uni-pdf-spr16c

pu-llr-spr17

agh-ggos-spr17

agh-h-spr17

m
uni-f-spr17

m
uni-fsps-spr17c

m
uni-pdf-spr16

nbi-spr18

yach-fal17

m
ary-fal18

m
uni-f-fal17

Early Middle Late

#
 C
o
n
f
ic
ts

MaxSAT Local Search

Fig. 13: A comparison of the cost, in terms of students conflicts, before and
after applying the LS procedure.

ure 13 compares the number of conflicts, before and after this procedure. On
average the procedure reduces the number of conflicts by 22%.

5.3 Final Results

Table 2 shows the best cost found by our best approach per optimization
criteria and instance. Note that the penalties associated with the three op-
timization criteria (student conflicts, allocation penalty, and additional soft
constraints) vary from instance to instance. Therefore, it is difficult to com-
pare them. Nevertheless, one can see that the student conflict criteria, overall,
is the most costly even with the LS method. The muni* instances are on av-
erage the worst in terms of room allocation penalty. This can be explained by
the normal structure of these instances since they have few room options (Rc)
and a large penalty associated.

6 Conclusion and Future Work

This paper discusses the results obtained by our approach in ITC 2019. The
resulting tool UniCorT is able to solve two thirds of the benchmark instances
from ITC 2019 within the time limit of 6,000 seconds. This tool placed among
the five finalists. UniCorT takes advantage of two pre-processing techniques
that search for: (i) self-contained sub-instances and (ii) clusters of students.
The first method is able to divide, on average, an instance into 3 sub-instances.
The clustering of students is able to reduce the number of variables used, on

124

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

ITC 2019 : University Course Timetabling with MaxSAT

Table 2: The cost per optimization criteria and instance.

Instance Cost Students Time Room Distribution
agh-fis-spr17 35139 3555 2248 2312 404

agh-ggis-spr17 194138 26097 2737 22270 2029
bet-fal17 UKN
iku-fal17 UKN

mary-spr17 51147 1114 1376 805 7290
muni-fi-spr16 19314 3286 352 628 120

muni-fsps-spr17 211142 2040 58 292 360
muni-pdf-spr16c 567900 15678 58316 27600 4361

pu-llr-spr17 68003 7642 1169 30
tg-fal17 6774 0 1792 30 158

agh-ggos-spr17 79745 8230 6045 9045 358
agh-h-spr17 55887 1848 1442 1039 2656
lums-spr18 594 0 0 509 17

muni-fi-spr17 18080 3212 284 958 21
muni-fsps-spr17c 618217 6048 411 1027 141
muni-pdf-spr16 310994 7853 38680 27094 900

nbi-spr18 49924 7196 5946 9208 5
pu-d5-spr17 UKN
pu-proj-fal19 UKN

yach-fal17 32198 4856 8 1008 687

agh-fal17 UKN
bet-spr18 UKN
iku-fal18 UKN

lums-fal17 1151 0 105 626 63
mary-fal18 44097 4107 596 665 234

muni-fi-fal17 19683 3810 86 289 9
muni-fspsx-fal17 UKN
muni-pdfx-fal17 UKN

pu-d9-fal19 UKN
tg-spr18 31900 0 1942 3996 1201

average, by 23%. The LS method, in the end, is able to reduce the number of
conflicts by 22% without adding a significant overhead.

UniCorT solves the course timetabling and student sectioning problems
separately in order to reduce the size of the problem and thus the execution
time. This decomposition does not remove any feasible solutions. However, it
may remove the optimal solution but allows us to solve more instances within
the time limit.

The MaxSAT encodings applied in UniCorT encode MaxBlock and
MaxBreaks constraints by blocking all invalid assignments. In order to block
the invalid assignments, we generate all block combinations possible. How-
ever, this method proves inefficient for large instances. For this reason, we
plan to work on new ways of encoding these constraints in such a way we
avoid enumerating all possible blocks. More precisely, we can take advantage
of symmetries in the blocks structure to reduce the clauses generated.

125

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

References

1. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and
International Timetabling Competition 2019. In: Burke, E.K., Di Gaspero,
L., McCollum, B., Musliu, N., Özcan, E. (eds.) Proceedings of the 12th
International Conference on the Practice and Theory of Automated
Timetabling (PATAT-2018). pp. 5–31 (2018)

2. Bittner, P.M., Thum, T., Schaefer, I.: SAT encodings of the at-most-k
constraint - A case study on configuring university courses. In: Proceedings
of the Software Engineering and Formal Methods (SEFM). pp. 127–144
(2019)

3. Aśın Achá, R.J., Nieuwenhuis, R.: Curriculum-based course timetabling
with SAT and MaxSAT. Annals of Operations Research 218(1), 71–91
(2014)

4. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185.
IOS press (2009)

5. Lemos, A., Monteiro, P.T., Lynce, I.: Minimal perturbation in university
timetabling with maximum satisfiability. In: Proceedings of 17th Interna-
tional Conference on Integration of Constraint Programming, Artificial In-
telligence, and Operations Research (CPAIOR) (2020), preprint at http:
//web.tecnico.ulisboa.pt/alexandre.lemos/papers/CPAIOR20.pdf

6. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for sat-
isfiability. In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the
International Conference on Computer-Aided Design (ICCAD). pp. 220–
227. IEEE Computer Society / ACM (1996)

7. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve real-
world SAT instances. In: Kuipers, B., Webber, B.L. (eds.) Proceedings of
the Fourteenth National Conference on Artificial Intelligence (AAAI) and
Ninth Innovative Applications of Artificial Intelligence Conference (IAAI).
pp. 203–208. AAAI Press / The MIT Press (1997)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory.
J. ACM 7(3), 201–215 (1960)

9. Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: A modular
MaxSAT solver,. In: Theory and Applications of Satisfiability Testing
(SAT) - 17th. pp. 438–445 (2014)

10. Nadel, A.: TT-Open-WBO-Inc: Tuning polarity and variable selection for
anytime SAT-based optimization. In: Proceedings of the MaxSAT Evalu-
ations (2019)

11. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for
incomplete MaxSAT. In: Principles and Practice of Constraint Program-
ming (CP). pp. 219–228 (2018)

12. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26
(2006)

13. Lovelace, A.L.: On the complexity of scheduling university courses. Mas-
ter’s thesis, California Polytechnic State University, San Luis Obispo

126

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

http://web.tecnico.ulisboa.pt/alexandre.lemos/papers/CPAIOR20.pdf
http://web.tecnico.ulisboa.pt/alexandre.lemos/papers/CPAIOR20.pdf

ITC 2019 : University Course Timetabling with MaxSAT

(2010)
14. Herres, B., Schmitz, H.: Decomposition of university course timetabling.

Annals of Operations Research (2019)
15. McCollum, B.: University timetabling: Bridging the gap between research

and practice. In: 5th International Conference on the Practice and Theory
of Automated Timetabling (PATAT). pp. 15–35. Springer (2006)

16. Vrielink, R.A.O., Jansen, E.A., Hans, E.W., van Hillegersberg, J.: Prac-
tices in timetabling in higher education institutions: a systematic review.
Annals of Operations Research 275(1), 145–160 (2019)

17. Müller, T.: ITC-2007 solver description: a hybrid approach. Annals of
Operations Research 172(1), 429 (2009)

18. Atsuta, M., Nonobe, K., Ibaraki, T.: ITC-2007 track 2: an approach using
a general CSP solver. In: 7th International Conference on the Practice and
Theory of Automated Timetabling (PATAT). pp. 19–22 (2008)

19. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T.,
Tamura, N., Wanko, P.: teaspoon : Solving the curriculum-based course
timetabling problems with Answer Set Programming. Annals of Opera-
tions Research 275(1), 3–37 (2019)

20. Lemos, A., Melo, F.S., Monteiro, P.T., Lynce, I.: Room usage optimiza-
tion in timetabling: A case study at Universidade de Lisboa. Operations
Research Perspectives 6, 100092 (2019)

21. Lindahl, M., Stidsen, T., Sørensen, M.: Quality recovering of university
timetables. European Journal of Operational Research 276(2), 422 – 435
(2019)

22. Phillips, A.E., Walker, C.G., Ehrgott, M., Ryan, D.M.: Integer program-
ming for minimal perturbation problems in university course timetabling.
Annals of Operations Research 252(2), 283–304 (2017)

23. Gülcü, A., Akkan, C.: Robust university course timetabling problem sub-
ject to single and multiple disruptions. European Journal of Operational
Research 283(2), 630 – 646 (2020)

24. Lemos, A., Melo, F.S., Monteiro, P.T., Lynce, I.: Disruptions in Timeta-
bles: A Case Study at Universidade de Lisboa. Journal of Scheduling
(2020)

25. Carter, M.W.: A comprehensive course timetabling and student scheduling
system at the University of Waterloo. In: 3rd International Conference on
the Practice and Theory of Automated Timetabling (PATAT). pp. 64–84
(2000)

26. Schindl, D.: Optimal student sectioning on mandatory courses with various
sections numbers. Annals of Operations Research 275(1), 209–221 (2019)

27. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: Penalising patterns
in timetables: Novel integer programming formulations. In: Operations
Research Proceedings, pp. 409–414. Springer (2008)

28. Nadel, A.: Anytime weighted MaxSAT with improved polarity selection
and bit-vector optimization. In: Proceedings of the 19th Conference on
Formal Methods in Computer Aided Design (FMCAD) (2019)

127

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

A. Lemos et al.

29. Warners, J.P.: A linear-time transformation of linear inequalities into con-
junctive normal form. Information Processing Letters 68(2), 63–69 (1998)

30. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables
into problems with boolean variables. In: Proceedings of the Seventh In-
ternational Conference on Theory and Applications of Satisfiability Test-
ing (SAT). vol. 3542, p. 1–15 (2004)

31. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic
optimization: algorithms & applications. Annals of Mathematics and Ar-
tificial Intelligence 62(3-4), 317–343 (2011)

128

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

	Introduction
	Background
	MaxSAT
	University Course Timetabling

	Problem Definition
	Proposed Solution
	Pre-processing
	MaxSAT
	Direct Course Timetabling
	Linked Course Timetabling
	Student Sectioning

	Local Search: Student Conflict Optimisation

	Experimental Evaluation
	Experimental Setup
	Computational Evaluation
	Pre-processing Techniques
	Identification of independent sub-instances
	Merging students

	MaxSAT Solving
	MaxBlocks and MaxBreaks.
	Decomposing UCTTP.

	Local Search

	Final Results

	Conclusion and Future Work

